
Formalizing Cyber–Physical System Model
Transformation via Abstract Interpretation

Natasha Jarus, Sahra Sedigh Sarvestani, and Ali Hurson

Department of Electrical and Computer Engineering
Missouri University of Science and Technology

Rolla, USA 65409
Email: {jarus, sedighs, hurson}@mst.edu

4 January 2019

1 / 16



Introduction

I The numerous requirements for Cyber-physical systems
(CPSs) present challenges to system designers.

I An intelligent water distribution network (IWDN) must
I be able to supply all its customers,
I be fault–tolerant in the face of component failure,
I be secure against physical and cyber attacks, and
I achieve all these goals with efficient infrastructure.

I Model–based design and evaluation can facilitate the design
process.
I No single modeling formalism

captures all requirements
I Constructing multiple models

is laborious and error-prone

2 / 16

Water
Tower

Consumer

Consumer

Intelligent
Control

Valve



Model Transformation

Model transformation converts a model of one type, e.g., a
survivability model, to a model of another type, e.g., a reliability
model.
Model transformation techniques:

I Reduce the effort required to model complex systems.

I Reduce errors in the modeling process.

I Enable cross-domain application of modeling approaches.

3 / 16



Research Contribution

Formalize system and model semantics, enabling
sound system model transformation.

I Relating models to each other ensures that modeling
assumptions are consistent across every model of a system.

I Identifying and understanding relationships between system
attributes improves our understanding of complex system
behavior and improves the accuracy of the models.

This work formalizes the research approach outlined in our previous
work:

I Models abstract the semantics of a system—its structure and
behavior.

I Defining sound mappings between system and model
semantics enables sound model transformation.

4 / 16



Related Work: Model Transformation

I Graph transformation: Models are represented by graphs and
transformed through graph rewriting.
I Projects: AToM3 (McGill, 2002), CHESS (Intecs, Italy, 2016),

CONCERTO (Intecs, Italy, 2015)

I Class inheritance transformation: Models are instances of
classes in an object-oriented class hierarchy.
I Projects: OsMoSys (University of Napoli, 2007), SIMTHESys

(University of Napoli, 2016)

I Coalgebraic transformation: Models are coalgebras in a lattice
of possible transformations.
I Projects: Rosetta (University of Kansas, 2012)

5 / 16



Open Problems

Our work is necessary because:
I Existing approaches, such as graph or class inheritance

transformation, are difficult to apply or inapplicable to certain
model types.
I In particular, relating discrete- and continuous-time models is a

challenge.
I This challenge is critical to address for CPSs.

I Model transformation techniques must exhibit two attributes:
I Correctness: the inferred model describes the same system as

the source model
I Specificity: the inferred model contains at least as much

information as possible from the source model

Of these attributes, correctness is only addressed by Rosetta,
and to our knowledge no approaches address specificity.

6 / 16



Open Problems

Our work is necessary because:
I Existing approaches, such as graph or class inheritance

transformation, are difficult to apply or inapplicable to certain
model types.
I In particular, relating discrete- and continuous-time models is a

challenge.
I This challenge is critical to address for CPSs.

I Model transformation techniques must exhibit two attributes:
I Correctness: the inferred model describes the same system as

the source model
I Specificity: the inferred model contains at least as much

information as possible from the source model

Of these attributes, correctness is only addressed by Rosetta,
and to our knowledge no approaches address specificity.

6 / 16



Properties

I System semantics are represented in terms of properties that
hold for the system.

I As models abstract system semantics, our representation of
properties must allow models to not capture all aspects of a
system.

We require the properties domain, Properties, to be a complete
lattice.
I p1 v p2 if p1 is more specific than p2. For example,

I p1 v p2 if p1 requires a component’s reliability to be 0.95 but
p2 constrains it within the range [0.7, 1.0).

I p1 and p2 are not comparable if p1 knows the cyber
components of a system and p2 knows the physical
components.

I p1 u p2, or the meet of p1 and p2, requires the system to meet
the constraints of p1 and p2.

I p1 t p2, or the join of p1 and p2, requires the system to meet
the constraints of p1 or p2.

7 / 16



Models

I As a model may not specify all aspects of a system, so an
element of Properties may not specify a single model.
I We can derive a single reliability model only when each

component’s reliability is known exactly.
I We can derive a set of models containing every possible model

consistent with the known system properties.

We develop connections between Properties and a complete
lattice of sets of models, Model, for each modeling formalism:
I M1 ⊆ M2 if M1 is a subset of M2 and therefore more

specific—it has fewer possible models and therefore more
system constraints.

I The meet M1 ∩M2 corresponds to the logical and of the
possible system models.

I The join M1 ∪M2 corresponds to the logical or of the possible
system models.

I The empty set ∅ corresponds to a modeling contradiction: no
models of this system are possible!

8 / 16



Correctness

How do we know that an element of Properties or a set of models
from some Model corresponds to the system we are modeling, s?

We suppose that we know the correctness relation RP where s RP p
if p ∈ Properties correctly describes s.

A correctness relation for a lattice L has two properties:
I If some properties correctly describe a system, all properties

less specific than them also describe that system.
I If s RL l1 and l1 v l2, then s RL l2.

I If several properties describe a system, the conjunction of
them also describes that system.
I If s RL l for all l ∈ L ⊆ L, then s RL ⊔L.

The connections we build between Properties and our Model
domains induce a correctness relation for each modeling formalism.

9 / 16



Abstraction and Concretization

We derive, or concretize, system
properties from a model with the
concretization operator
γ : Model→ Properties.


p 0 q 0
0 p 0 q
0 0 1 0
0 0 0 1



Dependencies

Concretization

We abstract models from system
properties with the abstraction operator
α : Properties→ Model. Water

Tower
Consumer

Consumer

Intelligent
Control

Valve

Components

Abstraction

10 / 16



Correctness of Abstraction and Concretization

I Abstraction may lose some properties of the system—those
not captured by the modeling formalism—but cannot add any
new properties:
I p v (α ◦ γ)(p)

I Concretization must completely capture the system properties
given by a model:
I (γ ◦ α)(M) v M
I (in practice, the v above is often strict equality.)

This relationship allows us to induce a correctness relation on
Model by s RM M ⇐⇒ s RP γ(M).

The operators α and γ can be used to build model transformation
operators and the relationship RM allows us to prove those
transformations are sound.

11 / 16



Model Transformation

The goal of model transformation is to define a sound mapping
from one modeling formalism to another: τM2

M1
: Model1 → Model2.

For example, given a correct set of reliability models R, we can
produce a correct set of topology models T = τTop

Rel .

We define τM2
M1

(M1) by (αM2
◦ γM1

)(M1):
I Concretize system properties from the given set of models.
I Abstract a set of models of the desired formalism.

s s s
...

...
...

RM1
=⇒ RP =⇒ RM2...

...
...

Model1 Properties Model2γM1
αM2

τM2
M1 12 / 16



Selection

Up to this point, we have been focused on relating and
transforming sets of models.

How do we transform a single model into a single model in a
different formalism?

We can transform a single input model m1 into a set of result
models M2 = τM2

M1
({m1}).

To select a single model from M2:

I If M2 = ∅, the input data contained a modeling contradiction
and no result is produced.

I If M2 contains a single model m2, that is the result of the
transformation.

I Otherwise, the designer must provide information about the
system not present in the input model to select a single model
from the set of possible models.
I For instance, a topology model does not specify component

reliability.
13 / 16



Specificity

I More comprehensive sets of properties yield greater specificity.
I Greater specificity leads to fewer possible inferred models.
I The selection process requires incorporation of information

not present in the initial model.
I This additional information can be incorporated into a more

specific element of Properties for use in future
transformations.

Properties

Model1 Model2

Model1 Model2

m 7→ {m}

Concretization Abstraction

Selection

14 / 16



Tag–Options Lattices

When defining Properties, we often need to associate some parts
of the system (tags) with sets of possible properties (options).

For example, system components may have an associated
reliability.

We formalize this relationship with a tag–options lattice. The
elements of these lattices are pairs (T , f ):
I T is the set of known tags

I e.g., component names

I f is a function mapping each known tag to a corresponding
set of known options
I e.g., f (pipe 1) = [0.7, 1.0) constrains the reliability of pipe 1

to the range [0.7, 1.0).

These elements are ordered by specificity: the more tags and the
fewer options associated with each tag, the more specific the
properties.

15 / 16



Conclusions

I We presented an approach to relating models of systems to
properties of systems.

I This approach formalizes correctness as a relationship between
a system and properties of that system.

I The relationship between models and properties preserves this
correctness relationship.

I Such relationships also define sound model transformations.
I This research can accelerate advances in design and analysis

of complex systems by enabling cross-domain transfer of
knowledge.

Future work will take several directions:

I We are developing a properties domain and formalizing a
reliability model formalism and a topology model formalism.

I We plan to extend this work to other modeling formalisms,
including continuous– and discrete–time models.

16 / 16



Graph Transformation

I Formulate models as graphs and model transformation as
rewriting of the graphs.

I Each model type has a meta-model that describes how its
graph can be transformed to graphs of other model types.

I Applies to many formalisms, including Petri nets and Markov
chains, but not all.

I Projects: AToM3, CHESS, CONCERTO
I CHESS and CONCERTO are more focused on modeling

multi-core computer systems.

back

1 / 4



Class Inheritance Transformation

I Each model type corresponds to a class in an object-oriented
class hierarchy.

I Models are instances of their type’s class.

I Transformation occurs by using inheritance principles to
convert a model from one type to another.

I Easy to travel ‘up’ the class hierarchy; hard to travel back
‘down’.

I Projects: OsMoSys, SIMTHESys

back

2 / 4



Coalgebraic Transformation

I Each modeling formalism is described as a coalgebra – a
mathematical system useful for describing transitions among
states.

I The coalgebras are placed in a lattice to provide a structure
for determining which transformations can be performed.

I Can relate different types of models of the same system, such
as a model of system functionality and a model of system
power consumption.

I Projects: Rosetta

back

3 / 4



Related Work: Model Composition

I A hierarchical approach is most commonly taken.
I Build subsystem-level models and link them together into

system-level models.
I Subsystem models may be of different types
I Example: composing a discrete-time model of control software

and a continuous-time model of a water valve

I Projects: Ptolemy (Berkeley, 2018), Möbius (University of
Illinois, 2015)

I Both projects typically involve models of functional attributes
and are created to facilitate system simulation.

4 / 4


	Introduction
	Related Work
	Approach
	Appendix

